

dragon

“dragon” is a build system primarily targeting jailbroken iOS devices, capable of building tweaks, preferences, frameworks, apps, and anything else related to them.

It’s designed to be simple, both in installation and usage, and to be hackable and configurable at every step of the way.

Contents:

	Setup
	Installing

	Updating

	Commands
	Packaging Commands

	Device Commands

	Quick-Start Guide

	The DragonMake Format
	The Project

	Modules

	Structure

	Theos Support
	control files, Bundle filters, etc.

	Makefile interpreter

Setup

Installing

Installing is incredibly simple:

pip3 install dragon

Type “dragon” in your terminal to complete the initial setup

Updating

Versions 1.6.0 and later:

dragon update

Updating from earlier versions:

rm -rf ~/.dragon
pip3 install --force-reinstall dragon
dragon

Commands

Running dragon without any arguments will list available commands, many of which have multiple aliases.

You can combine most commands to do multiple actions with one command.

Packaging Commands

Creating a new project/module

dragon n, dragon new, dragon nic, dragon edit, or dragon create will open the Project Editor

Building a package

dragon b, dragon build, or dragon make builds a package

Building a package for release

The r / release command can be added to the build command to define “NDEBUG” and undefine “DEBUG” within compiled code.

Passing this flag will also cause the contents of the DragonMake variable dbgflags to be ignored, and the contents of releaseflags to be used instead.

Clean Building a package

dragon c or dragon clean will clean the ‘build cache’

Combine it with the build command to run a clean build (e.g. dragon c b)

Device Commands

Setting up a device

dragon s or dragon device will set up an installation target

Installing a package

dragon i or dragon install installs a package

Combine it with the build command, or use dragon do to build and install a package

Respringing a device

dragon rs or dragon respring will respring the current device (i.e. current installation target)

Running a command on the device

dragon dr <commands> or dragon devicerun <commands> will execute anything after the command on the current device (i.e. current installation target) [don’t use quotes]

Installing any deb on the device

dragon sn <file> or dragon send <file> will install a .deb anywhere on your drive to the current device (i.e. current installation target)

Building and installing to the iOS Simulator

Adding the sim command to a set of commands targets the simulator. If added to an install command, it will install the specified deb to the iOS simulator

Quick-Start Guide

After completing the setup, getting started with dragon is easy.

Creating your first project:

dragon n

This opens the dragon project editor

[image: _images/dragon-quickstart-1.png]
Building your project:

dragon b

Installing your project:

dragon i

You can do both of these at the same time; most commands in dragon can be combined:

dragon b i

Or you can use the shorthand notation:

dragon do

Building and installing to the iOS Simulator:

dragon b i sim

The DragonMake Format

Intead of splitting up build instructions among a ton of ‘Makefile’s, dragon build variables are all declared in a single DragonMake file at the root of the project.

DragonMake files use YAML syntax.

name: DemoTweak
id: me.cynder.dragondemo
depends: mobilesubstrate
architecture: iphoneos-arm
description: Demo Tweak
author: cynder
section: Tweaks

DemoTweak:
 type: tweak
 filter:
 executables:
 - SpringBoard
 files:
 - DemoTweak.x

The Project

The full DragonMake represents the “Project”, which contains one or more “Modules” (tweaks, prefs, etc).

name: DemoTweak
id: me.cynder.dragondemo
depends: mobilesubstrate
architecture: iphoneos-arm
description: Demo Tweak
author: cynder
section: Tweaks

Variables

	Variable

	Type

	Description

	name

	String

	Name of the project

	icmd

	String

	(Optional) Command to run after installation on the target device

control Variables

If your project already has a control file you don’t need to worry about these.

	Variable

	Type

	Description

	id

	String

	Bundle ID (e.g. me.cynder.demotweak) for the Project

	author

	String

	Author of the project. Current account’s username will be used if none is provided

	description

	String

	Description of the package

	version

	String

	Version of the project

	section

	String

	Section to place this tweak in. (e.g. ‘Tweaks’)

	depends

	String

	Comma separated list of bundle ids this package depends on

	maintainer

	String

	(Optional) Maintainer of the project. Will use the value of ‘author’ if none is provided

	provides

	String

	(Optional) Comma separated list of bundle ids this package provides

Debian Package Script Variables

Lists of commands can be specified with preinst:, postinst:, prerm: and/or postrm: to create packaging scripts included in the binary.

name: DemoTweak
id: me.cynder.dragondemo
depends: mobilesubstrate
architecture: iphoneos-arm
description: Demo Tweak
author: cynder
section: Tweaks
This will run on the device after installation
postinst:
 - echo "Hello from dragon!"

Modules

Modules in the DragonMake represent individual components of your package.

These include things like a Tweak, Preferences, etc.

DemoTweak:
 type: tweak
 filter:
 executables:
 - SpringBoard
 files:
 - DemoTweak.x

The “Important” Variables

	Variable

	Type

	Description

	type

	String

	Project type – see next section

	dir

	String

	(Optional) Subdirectory the files are located in, if they’re in one

	files

	List

	List of files in the project to be compiled

Types

	Type

	Description

	app

	Build an application for jailbroken devices

	tweak

	Build a tweak for jailbroken devices

	prefs

	Build a preference bundle

	bundle

	Build some other type of bundle

	resource-bundle

	Build a bundle containing only resources

	framework

	Build a framework

	library

	Build a library

	cli

	Build a CLI tool/binary

	static

	Build a static library

	stage

	Module containing only a stage variable

Tweak bundle filters

Bundle filters tell MobileSubstrate (or whatever injection system your jailbreak uses) what processes to inject your tweak into.

dragon supports the standard Theos format, but allows specifying the values in the DragonMake, if you want.

DemoTweak:
 type: tweak
 # This bit
 filter:
 executables:
 - SpringBoard

 files:
 - DemoTweak.x

Common Module variables

None of these are required by default, but you may need some of them for various projects.

	Variable

	Type

	Description

	archs

	List

	List of archs to compile for

	cflags

	String/List

	List (or a space seperated string) with cflags used at compilation time

	releaseflags

	String/List

	List (or a space seperated string) with cflags used on release (dragon b r) builds

	dbgflags

	String/List

	List (or a space seperated string) with cflags used on debug builds (without r/release command)

	frameworks

	List

	List of frameworks to link against

	libs

	List

	List of libraries to link against

	entfile

	String

	File containing entitlements to codesign the module with

	include

	List

	List of directories to search for headers in

	additional_fw_dirs

	List

	List of additional directories to search for frameworks in

	additional_lib_dirs

	List

	List of additional directories to search for libraries in

	prefix

	List

	List of headers to be imported into ALL files at compilation time

	for

	String

	Sets the target OS to build for [ios, watchos, host(macos)]

	arc

	Boolean

	Enable ARC (Default: YES)

	sysroot

	String

	Specify Directory the SDK is located in

	targetvers

	String

	Version of the OS to target

	macros

	List

	List of declaration flags (-D<value>) to add to the compilation flags

Setting Module Defaults

A special module can be specified with the name all:; its variables will be set as the “default” value for all Modules in the project.

If a Module specifies a different value than all:, it’ll override the one declared in all:.

Structure

dragon is set up such that the resources you need are provided via submodules and additional resources can be added as desired.

	frameworks/:
	A place for frameworks (.framework) [uses .tbd format]

	include/:
	A place for headers (.h)

	internal/:
	A place for YAML configuration files (.yml) [not meant to be edited, but feel free to get your hands dirty]

	lib/:
	A place for libraries [uses .dylib or .tbd format]

	sdks/:
	A place for SDKs (.sdk) [should be patched to include private frameworks]

	src/:
	A place for out-sourced tools modified and built for use with dragon

	toolchain/:
	A place for a user-provided toolchain [unnecessary on Darwin platforms]

	vendor/:
	A place for tools and resources provided by dragon [not meant to be edited]

Theos Support

dragon aims to provide as much compatibility with theos projects and their structure as possible.

control files, Bundle filters, etc.

dragon ships with support for these in both Theos Makefile and DragonMake format projects.

Makefile interpreter

dragon includes a best-effort Makefile “interpreter” that attempts to translate as much from standard Theos project structure as possible.

It also includes several support files used with Theos projects.

Compiling a Theos project should be as simple as:

dragon b

If you encounter any issues with it, feel free to file an issue on https://github.com/DragonBuild/dragon.

Index

Objective-CS and the llvm-objcs Toolchin

Dragon ships with builtin integration for the llvm-objcs toolchain and the Objective-CS hooking language.

It provides wrappers, utilities, and commands that help set up the toolchain and get autocomplete, editor support, etc working with clangd.

A companion extension for vscode exists at [LINKHERE]

Adding support to a project should be fairly drop-in. Projects using Objective-CS can still use logos, they will just need
to be in separate files for autocomplete, etc to work.

Objective-CS

Objective-CS is an extension of Objective-C designed to provide easier integration with hooking APIs than working in purely Objective-C.

By building our language directly within llvm as opposed to via a preprocessor (logos), we gain access to a large amount of
existing tooling that already supports LLVM.

This allows autocomplete, inline error messages/help/suggestions, and the myriad other clangd features to work within
Objective-CS files.

File Extension

Currently, Objective-CS just adds support directly into Objective-C code, so you use the same .m or .mm extension as regular
objc. Eventually it may be gated or aliased to .mx/.mmx.

Basic Syntax

The following code block demos the full current featureset of Objective-CS

// Predeclaring the interface for what we're hoooking isn't required,
// but it allows us to:
// autocomplete hook selectors
// access ivars of the class we're hooking
// declare new methods we want to add
@interface SBIconView : UIView
{
 BOOL _allowsLabelArea; // Declare ivars we want to "hook" (access) here
 CGFloat _iconImageAlpha; // This replaces the need for swapping to ObjC++ and wrangling the MSHookIvar API.
}

-(void)configureForLabelAllowed:(BOOL)allowed;

@new
-(void)myAwesomeNewInstanceMethod;

@end

// If you've already imported a header for a given class (from a patched SDK that has proper headers),
// you can instead declare a category (`@interface SBIconView ()`) and still utilize these features.
// This accomplishes the same thing in terms of
// applying new methods, accessing ivars that maybe didn't exist in the header you imported, etc.

// --

@group iOS13Plus
@hook SBIconView

-(void)myAwesomeNewInstanceMethod
{
 NSLog(@"Hello from Objective-CS!");
}

-(void)configureForLabelAllowed:(BOOL)allowed
{
 @orig(NO);
 _allowsLabelArea = NO;
 _iconImageAlpha = 0.5;
 [self myAwesomeNewInstanceMethod];
}

@end
@end

#ifndef kCFCoreFoundationVersionNumber_iOS_13_0
#define kCFCoreFoundationVersionNumber_iOS_13_0 1665.15
#endif

// This is a manually declared constructor. This is not required if you are not using groups.
// You *will* need to use one if you are using groups, as all groups must be initialized for their hooks to be applied.
// _eventually,_ something like @ctor (analogous to logos' %ctor) may be added.
__attribute__((constructor))
void initFunc(void)
{
 if (kCFCoreFoundationVersionNumber >= kCFCoreFoundationVersionNumber_iOS_13_0){
 @init(iOS13Plus);
 // initialize multiple groups: @init(myGroup, mySecondGroup, andSoOn);
 }
}

Future

Plans exist to add support for:
* @hookf(FunctionName)
* @ctor{}
* @subclass

This is a hobby project with one developer, so there is no timeframe on these plans :)

llvm-objcs

LLVM-objcs is a fork of Apple’s LLVM that supports compiling Objective-CS code.

It aims to support the same featureset as apple-llvm, however modules have been an undocumented pain to compile support for,
so the currently distributed binaries do not yet support them (i.e. @import UIKit;. Just import headers normally for now).

Builds are available in arm64 and x86_64 form for macOS, <upcoming> linux, and iOS (iOS is arm64 only, silly)</upcoming>

Installing

dragon lo setup will download and install the appropriate toolchain for your system.

It will also be automatically installed if a DragonMake project declares it as required, and it isn’t already installed.

Manually

Download or build the appropriate toolchain and extract/install it in ~/.dragon/llvm-objcs. The directory structure
should be as follows:

serket@prospit ~ % tree ~/.dragon/llvm-objcs -L 1
/Users/serket/.dragon/llvm-objcs
├── bin
├── include
├── lib
├── libexec
└── share

After that you’re good to go.

Future

As this toolchain was built off of llvm-17, it does not support arm64e libraries injected into arm64e processes for pre-iOS 14 devices.

This is an issue with all toolchains post llvm-12, and workarounds are being looked into.

 nav.xhtml

 Table of Contents

 		
 dragon

 		
 Setup

 		
 Installing

 		
 Updating

 		
 Commands

 		
 Packaging Commands

 		
 Creating a new project/module

 		
 Building a package

 		
 Clean Building a package

 		
 Device Commands

 		
 Setting up a device

 		
 Installing a package

 		
 Respringing a device

 		
 Running a command on the device

 		
 Installing any deb on the device

 		
 Building and installing to the iOS Simulator

 		
 Quick-Start Guide

 		
 The DragonMake Format

 		
 The Project

 		
 Variables

 		
 control Variables

 		
 Debian Package Script Variables

 		
 Modules

 		
 The “Important” Variables

 		
 Common Module variables

 		
 Setting Module Defaults

 		
 Structure

 		
 Theos Support

 		
 control files, Bundle filters, etc.

 		
 Makefile interpreter

_static/file.png

_static/logo-dark.png
©
&)

_static/plus.png

_static/logo-light.png

_static/minus.png

_images/dragon-quickstart-1.png
kritantasnocturne ~/src/demo
> $ dragon n

[Project £ditor] Project Name (demo

>> DemoTweak

[Project £ditor] Bundle ID (com.kritanta.demo)

>> me.krit.dragondemo

[Project Fditor] Description (A cool Mobilesubstrate Tweak!

>> Demo Tweak

[Project £ditor] Author (kritanta

>> krit

[Project fditor] Select Module Type

101 > Tweak

[1] > CLT Tool

[2] > Library

[Project £ditor] Select Ttem (6)

>0

[Project fditor] Name (TweakName)

>> DemoTweak

[Project £ditor] Subdiretory Name (Leave empty for no subdir) (
>

[Project Fditor| Comma seperated list of applications to inject (springoard)
>

