
dragon
Release 1.7.3

cynder

Jul 02, 2023

CONTENTS:

1 Setup 3
1.1 Installing . 3
1.2 Updating . 3

2 Commands 5
2.1 Packaging Commands . 5
2.2 Device Commands . 6

3 Quick-Start Guide 7

4 The DragonMake Format 9
4.1 The Project . 9
4.2 Modules . 10

5 Structure 13

6 Theos Support 15
6.1 control files, Bundle filters, etc. 15
6.2 Makefile interpreter . 15

i

ii

dragon, Release 1.7.3

“dragon” is a build system primarily targeting jailbroken iOS devices, capable of building tweaks, preferences, frame-
works, apps, and anything else related to them.

It’s designed to be simple, both in installation and usage, and to be hackable and configurable at every step of the way.

CONTENTS: 1

dragon, Release 1.7.3

2 CONTENTS:

CHAPTER

ONE

SETUP

1.1 Installing

Installing is incredibly simple:

pip3 install dragon

Type “dragon” in your terminal to complete the initial setup

1.2 Updating

Versions 1.6.0 and later:

dragon update

Updating from earlier versions:

rm -rf ~/.dragon
pip3 install --force-reinstall dragon
dragon

3

dragon, Release 1.7.3

4 Chapter 1. Setup

CHAPTER

TWO

COMMANDS

Running dragon without any arguments will list available commands, many of which have multiple aliases.

You can combine most commands to do multiple actions with one command.

2.1 Packaging Commands

2.1.1 Creating a new project/module

dragon n, dragon new, dragon nic, dragon edit, or dragon create will open the Project Editor

2.1.2 Building a package

dragon b, dragon build, or dragon make builds a package

Building a package for release

The r / release command can be added to the build command to define “NDEBUG” and undefine “DEBUG” within
compiled code.

Passing this flag will also cause the contents of the DragonMake variable dbgflags to be ignored, and the contents of
releaseflags to be used instead.

2.1.3 Clean Building a package

dragon c or dragon clean will clean the ‘build cache’

Combine it with the build command to run a clean build (e.g. dragon c b)

5

dragon, Release 1.7.3

2.2 Device Commands

2.2.1 Setting up a device

dragon s or dragon device will set up an installation target

2.2.2 Installing a package

dragon i or dragon install installs a package

Combine it with the build command, or use dragon do to build and install a package

2.2.3 Respringing a device

dragon rs or dragon respring will respring the current device (i.e. current installation target)

2.2.4 Running a command on the device

dragon dr <commands> or dragon devicerun <commands> will execute anything after the command on the cur-
rent device (i.e. current installation target) [don’t use quotes]

2.2.5 Installing any deb on the device

dragon sn <file> or dragon send <file> will install a .deb anywhere on your drive to the current device (i.e.
current installation target)

2.2.6 Building and installing to the iOS Simulator

Adding the sim command to a set of commands targets the simulator. If added to an install command, it will install
the specified deb to the iOS simulator

6 Chapter 2. Commands

CHAPTER

THREE

QUICK-START GUIDE

After completing the setup, getting started with dragon is easy.

Creating your first project:

dragon n

This opens the dragon project editor

Building your project:

dragon b

Installing your project:

dragon i

You can do both of these at the same time; most commands in dragon can be combined:

dragon b i

Or you can use the shorthand notation:

7

dragon, Release 1.7.3

dragon do

Building and installing to the iOS Simulator:

dragon b i sim

8 Chapter 3. Quick-Start Guide

CHAPTER

FOUR

THE DRAGONMAKE FORMAT

Intead of splitting up build instructions among a ton of ‘Makefile’s, dragon build variables are all declared in a single
DragonMake file at the root of the project.

DragonMake files use YAML syntax.

name: DemoTweak
id: me.cynder.dragondemo
depends: mobilesubstrate
architecture: iphoneos-arm
description: Demo Tweak
author: cynder
section: Tweaks

DemoTweak:
type: tweak
filter:
executables:
- SpringBoard

files:
- DemoTweak.x

4.1 The Project

The full DragonMake represents the “Project”, which contains one or more “Modules” (tweaks, prefs, etc).

name: DemoTweak
id: me.cynder.dragondemo
depends: mobilesubstrate
architecture: iphoneos-arm
description: Demo Tweak
author: cynder
section: Tweaks

9

dragon, Release 1.7.3

4.1.1 Variables

Variable Type Description
name String Name of the project
icmd String (Optional) Command to run after installation on the target device

4.1.2 control Variables

If your project already has a control file you don’t need to worry about these.

Variable Type Description
id String Bundle ID (e.g. me.cynder.demotweak) for the Project
author String Author of the project. Current account’s username will be used if none

is provided
description String Description of the package
version String Version of the project
section String Section to place this tweak in. (e.g. ‘Tweaks’)
depends String Comma separated list of bundle ids this package depends on
maintainer String (Optional) Maintainer of the project. Will use the value of ‘author’ if

none is provided
provides String (Optional) Comma separated list of bundle ids this package provides

4.1.3 Debian Package Script Variables

Lists of commands can be specified with preinst:, postinst:, prerm: and/or postrm: to create packaging scripts included
in the binary.

name: DemoTweak
id: me.cynder.dragondemo
depends: mobilesubstrate
architecture: iphoneos-arm
description: Demo Tweak
author: cynder
section: Tweaks
This will run on the device after installation
postinst:
- echo "Hello from dragon!"

4.2 Modules

Modules in the DragonMake represent individual components of your package.

These include things like a Tweak, Preferences, etc.

DemoTweak:
type: tweak
filter:
executables:

(continues on next page)

10 Chapter 4. The DragonMake Format

dragon, Release 1.7.3

(continued from previous page)

- SpringBoard
files:
- DemoTweak.x

4.2.1 The “Important” Variables

Variable Type Description
type String Project type – see next section
dir String (Optional) Subdirectory the files are located in, if they’re in one
files List List of files in the project to be compiled

Types

Type Description
app Build an application for jailbroken devices
tweak Build a tweak for jailbroken devices
prefs Build a preference bundle
bundle Build some other type of bundle
resource-bundle Build a bundle containing only resources
framework Build a framework
library Build a library
cli Build a CLI tool/binary
static Build a static library
stage Module containing only a stage variable

Tweak bundle filters

Bundle filters tell MobileSubstrate (or whatever injection system your jailbreak uses) what processes to inject your
tweak into.

dragon supports the standard Theos format, but allows specifying the values in the DragonMake, if you want.

DemoTweak:
type: tweak
This bit
filter:
executables:
- SpringBoard

files:
- DemoTweak.x

4.2. Modules 11

dragon, Release 1.7.3

4.2.2 Common Module variables

None of these are required by default, but you may need some of them for various projects.

Variable Type Description
archs List List of archs to compile for
cflags String/ListList (or a space seperated string) with cflags used at compilation time
releaseflags String/ListList (or a space seperated string) with cflags used on release (dragon b

r) builds
dbgflags String/ListList (or a space seperated string) with cflags used on debug builds (with-

out r/release command)
frameworks List List of frameworks to link against
libs List List of libraries to link against
entfile String File containing entitlements to codesign the module with
include List List of directories to search for headers in
additional_fw_dirs List List of additional directories to search for frameworks in
additional_lib_dirs List List of additional directories to search for libraries in
prefix List List of headers to be imported into ALL files at compilation time
for String Sets the target OS to build for [ios, watchos, host(macos)]
arc BooleanEnable ARC (Default: YES)
sysroot String Specify Directory the SDK is located in
targetvers String Version of the OS to target
macros List List of declaration flags (-D<value>) to add to the compilation flags

4.2.3 Setting Module Defaults

A special module can be specified with the name all:; its variables will be set as the “default” value for all Modules in
the project.

If a Module specifies a different value than all:, it’ll override the one declared in all:.

12 Chapter 4. The DragonMake Format

CHAPTER

FIVE

STRUCTURE

dragon is set up such that the resources you need are provided via submodules and additional resources can be added
as desired.

frameworks/:
A place for frameworks (.framework) [uses .tbd format]

include/:
A place for headers (.h)

internal/:
A place for YAML configuration files (.yml) [not meant to be edited, but feel free to get your hands dirty]

lib/:
A place for libraries [uses .dylib or .tbd format]

sdks/:
A place for SDKs (.sdk) [should be patched to include private frameworks]

src/:
A place for out-sourced tools modified and built for use with dragon

toolchain/:
A place for a user-provided toolchain [unnecessary on Darwin platforms]

vendor/:
A place for tools and resources provided by dragon [not meant to be edited]

13

dragon, Release 1.7.3

14 Chapter 5. Structure

CHAPTER

SIX

THEOS SUPPORT

dragon aims to provide as much compatibility with theos projects and their structure as possible.

6.1 control files, Bundle filters, etc.

dragon ships with support for these in both Theos Makefile and DragonMake format projects.

6.2 Makefile interpreter

dragon includes a best-effort Makefile “interpreter” that attempts to translate as much from standard Theos project
structure as possible.

It also includes several support files used with Theos projects.

Compiling a Theos project should be as simple as:

dragon b

If you encounter any issues with it, feel free to file an issue on https://github.com/DragonBuild/dragon.

15

https://github.com/DragonBuild/dragon

	Setup
	Installing
	Updating

	Commands
	Packaging Commands
	Creating a new project/module
	Building a package
	Building a package for release

	Clean Building a package

	Device Commands
	Setting up a device
	Installing a package
	Respringing a device
	Running a command on the device
	Installing any deb on the device
	Building and installing to the iOS Simulator

	Quick-Start Guide
	The DragonMake Format
	The Project
	Variables
	control Variables
	Debian Package Script Variables

	Modules
	The “Important” Variables
	Types
	Tweak bundle filters

	Common Module variables
	Setting Module Defaults

	Structure
	Theos Support
	control files, Bundle filters, etc.
	Makefile interpreter

